Notice
Recent Posts
Recent Comments
Link
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | ||||
| 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 | 31 |
Tags
- AWS
- docker
- ipo 매매자동화
- 쿠키
- 이분탐색
- 완전탐색
- dau 3만명
- 프로그래머스
- 백그라운드시 연결안됨
- 아키텍쳐 개선
- 크롤링
- ALB 502 BadGateway
- JPA
- 셀러리
- 알람시스템
- TLS협상오류
- 누적합
- 몽고 인덱스
- 502오류
- 결제서비스
- 관측가능성
- BFS
- 백준
- next-stock
- 카카오
- gRPC
- 베타적락
- 추천 검색 기능
- 디버깅
- 구현
Archives
- Today
- Total
목록샤딩 (1)
코딩관계론
이전의 V3는 정말 모든 것을 만족했지만, 데이터가 지속적으로 확장된다면 결국 디비와 레디스의 용량은 한계에 도달하게 된다. 따라서 우리는 scalue-out 방법인 샤딩을 도입해서 이러한 문제를 방지해야 합니다. 검색어 추천 서비스의 경우에는 두 개의 저장소를 사용하고 있기 때문에 두 개의 저장소(Redis, Mongo)에 샤딩을 진행해야 합니다. 먼저 샤딩을 어떤 방식의 샤딩이 있는지 알아보고, 그에 맞는 적적한 샤딩 키 설계를 진행해야 합니다. 샤딩 키 설계가 잘못되면 한 서버로 데이터가 몰리게 되면서 샤딩 효과를 볼 수 없게 됩니다. 샤딩 방식에는 크게 모듈러 샤딩과 레인지 샤딩이 있습니다. 이제부터 각각의 장단점을 한번 살펴보겠습니다. 먼저 모듈러 방식은 아래 그림과 같습니다. 모듈러 방식으로 ..
개발
2024. 8. 13. 17:54